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of low negative and positive density were found 
throughout the unit cell, but the interesting fact re- 
mains that the highest peaks were found in the spaces 
between the heavy atoms. This is particularly the case 
for the C-C bonds, while the terminal C-O bonds in 
the side chains have very small or absent residuals. 
To illustrate the situation the residual electron density 
in the planes of the rings is shown in Fig. 8. Similar 
effects have been reported by Hartman & Hirshfeld 
(1966) and have been more thoroughly discussed by 
O'Connell, Rae & Maslen (1966). 
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The Use of Neutron Anomalous Scattering in Crystal Structure Analysis. 
I. Non-Centrosymmetrie Structures 
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A method for solving the phase problem ab initio in crystal structure studies by neutron diffraction has 
been suggested. This method is based on the anomalous scattering of thermal neutrons by certain nuclei. 
Using the data collected at two neutron energies, the process of phase determination is carried out in 
two steps: (i) the location of the position of the anomalous scatterer and (ii) the correlation of the phase 
of the structure factor with the phase of the anomalous scatterer. The method gives unique solution 
of the phases. The expressions deduced are general and can be used for X-ray anomalous scattering also. 

1. Introduction 

Direct methods of sign determination* which are based 
on the positivity of scattering matter are not applicable 
to neutron diffraction. Nor can the heavy atom method 
be used, as the scattering lengths of various nuclei do 
not differ appreciably. For these reasons the use of 
neutron diffraction in crystallography has been re- 
stricted to the location and the refinement of position 

* See a recent paper by Karle (1966). 

of light atoms (from the point of view of X-ray scat- 
tering) in a structure for which the main features are 
known from X-ray diffraction work. The possibility of 
solving the phase problem ab initio in neutron diffraction 
studies stems from the fact that some nuclei (e.g. 113Cd, 
1495m, 151Eu and 157Gd) show anomalous scattering in 
the thermal neutron range (Peterson & Smith, 1961, 
1962). Ramaseshan (1966) pointed out that anomalous 
dispersion effects in neutron scattering are much more 
pronounced than in X-ray scattering and hence can be 
used effectively in solving the structures provided the 
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experimental problems associated with the collection 
of data are solved. Thus writing the scattering length in 
the form b = bo + b' + ib", the ratios b'/bo and b"/bo can 
be as large as 6 and 10 respectively for n3Cd (cf. the 
X-ray case where mostly f ' / fo  ~-f"/fo ~ 0.15). 

Fig. 1 shows that by suitably choosing the neutron 
energy one can get (bo+b')/bo~_7, for n3Cd, i.e. a scat- 
tering length which is greater than that of other nuclei 
by a factor of about 7. This amounts to having a heavy 
atom in the structure. 

What is perhaps of importance is the fact pointed 
out by Ramaseshan (1966) that large anomalous dis- 
persion in nuclei like 113Cd, 1495m, 151Eu and 157Gd can 
make it possible to use neutron diffraction for solving 
the structure of large molecules. The success of the 
anomalous dispersion methods depends on observing 
significant differences, A/, between the intensities of 
inverse reflexions hkl and h~L In the case of X-ray 
anomalous scattering, the structure of vitamin B~2 
mono-acid has been solved with ( A I ) / ( I ) ~ O . 0 6 .  ( ( )  
indicates the root mean square value). If ( A 1 ) / ( I ) ~  
0.10 is taken as the criterion for a structure that can 
be handled by anomalous dispersion methods, it turns 
out that a structure containing about 2000 atoms per 
ll3Cd can be solved. 

The aim of the present paper is to show that by using 
the data collected at two neutron energies it is possible 
to locate the position of the anomalous scatterer and 
determine the phase unambiguously. The results ob- 
tained are general and can be applied to X-ray anom- 
alous scattering also. 

2. Determination of the position 
of the anomalous scatterer 

In handling the phase problem by" anomalous disper- 
sion methods, the first step is to locate and refine the 
position of the anomalous scatterer (A-scatterer). The 
position of A-scatterers which are invariably 'heavy 
atoms' in the case of X-ray scattering may be deter- 
mined by Patterson synthesis, but the location of the 
heavy atom vector in a Patterson synthesis becomes 
increasingly difficult as the number of light atoms in- 
creases. However, in the case of neutron scattering the 
A-scatterer need not necessarily be a 'heavy atom' for 
certain neutron energies and thus location of the A- 
scatterer becomes difficult even in structures of mod- 
erate complexity. A method which employs the com- 
bination of two sets of data collected at two neutron- 
energies has been suggested here for locating the posi- 
tion of A-scatterers. The two sets of data are combined 
to give IFAI z, the contribution due to the A-scatterer 
alone. Obviously, a Patterson synthesis with IFAI z will 
contain only the A-scatterer vectors. In effect the meth- 
od is similar to those described by Harding (1962), 
Kartha & Parthasarathy (1965), Matthews (1966) and 
Singh & Ramaseshan (1966) which employ the com- 
bination of isomorphous and anomalous dispersion 
data. However, the 'two wavelength method' is super- 

ior to the combination of isomorphous and anoma- 
lous data because one does not have to depend on the 
availability of isomorphous pairs. Moreover, lack of 
exact isomorphism is always a factor to be borne in 
mind in choosing the isomorphous pairs. 

Let us consider a structure with nA A-scatterers, all 
of the same type and nN normal scatterers (N-scatterer) 
in the unit cell. Let the scattering length of an A-scat- 
terer be denoted by 

ba =b0 + b' + ib" 
=b( r )+  ib(i) 

where b(r) = (bo + b') and b(i) = b". 
The structure factor FI(H) for neutron-energy E1 (as- 

sociated de Broglie wavelength 21 is given by 21 = 
h/1/2E1M, h is Planck's constant and M is the mass 
of the neutron), 

where 
FI(H) "-- F~'-F FA1 -t- F~" 1 

n N  

FN = .S bivtT~,i exp 2n iH.  rlv~ 
j=l 

nA 

F.41 = Z' bj(r)Taj exp 2n iH.  raj 
j--i 

nA 

=b(r) Z TA~ exp 2n iH.  rAj, 
j=l 

since A-scatterers are all of the same type. 
And 

nA 

F'a'I = bl(i) .~ T ~  exp 2n iH.  r~j 
j=l 

6"0 
x10-12 

4"0 

2"0 

-2"0 

(A) 

1"4 1"0 0"8 0"7 0"6 0-5 
i b , , ~ i 

wJ. 

-4"0 
0 0~08 0116 0~'24 0132 0"40 

E(eV) 

Fig. 1. The variation of b' and b" for ll3Cd with wavelength in 
the vicinity of the resonant wavelength. The shaded part 
shows the region where E1 and E2 can be chosen conveniently 
so that bl(r)= b2(r). (See Appendix.) 
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sin201 ) 
sinZ0~ 

TA,=exp ( - B A ,  ..... 2~ ) "  

Now 

IFI(H)I2 = FI(H).  F~(H) 
t t  / t ~  

= ( F N + F A : + F m ) .  (F~r+F~I+Fm)  
= [FNI z + ]FAa[ 2 + IF~'~I 2 + 2[FMIF~II cos ~0 

+ 21FNIIF~II cos e + 21FmlIF~It cos ~, 

where ~0, e and 9' are F~-FA1 (angle between F~v and 
FA1) FNF~] and FAxF.~ respectively. For only one type 
of A-atom, 9, = 90 o and e = (90 -  ~0). Thus 

IF:(H)I2 = IFNI 2 + {b~(r) + b~(i)}Ixl 2 

+2lfMbl(r)lx[  cos ~0+21fNlbl(i)lxl sin q~. (1) 

where 
nA 

Ixl =[{ s TAg COS 2zcH. rag} 2 
j= l  

nA 

+{ ~ TAg sin 2n i l .  rAg}2]~; 
j = l  

similarly, 

IFa(/q)l 2 = IFNI 2 + {b~(r) + b~(i)}lxl 2 
+2[FMbl(r)[xl cos ~0-2lFNlb~(i)]x] sin ~0. (2) 

Similar expressions for IF2(H)] 2 and [F2(/-I)[ 2 may be 
written and numbered equations (3) and (4) respec- 
tively. 

Now we define [Fm:(H)I 2, IFm2(H)I 2, AI1, and AI2 
as follows, 

IFml(H)I 2= ½[I Fx(H)I 2 + IFI(B)121 
= IF~I 2 + {b~(r) + b~(i)}lxl 2 

+ 21FMb~(r)lxl cos ~0 (5) 

[Fm2(H)I 2= ½[IF2(H)I 2 + IFz(B)121 
= I F_,vl 2 + {b~(r) + b~(i)}lxl 2 

+ 2lFMba(r)lxl cos ~0 (6) 

All = [[F:(H)I 2 - I  F~(/7)I z--  

4lFMbl(i)lxl sin q~ (7) 

and AI2=[IF2(H)I2- IF2(Er)[2]= 
4lFNIb2(i)lxl sin ~0. (8) 

Combining equations (7) and (8) we get, 

A11 A/" 2 
261(i) = 2~52(i) = 21fMIxl sin q~=fi. (9) 

It may be noted that Al:/Al2=b1(i)/b2(i)= constant. 
Since the absorption is quite different for the two 
wavelengths, this will provide a check on the accuracy 
of the data. 

The first term in equation (5) gives rise to N - N  peaks 
in a Patterson synthesis computed with [Fmx(H)] 2 as 
coefficient; the second and third terms give rise to A - A  

and A - N  peaks respectively. In order to be able to 
locate the A - A  peaks it is essential to eliminate A - N  
and N - N  peaks which tend to mask A - A  peaks. Ra- 
maseshan (1966) suggested that if the neutron energies 
are so chosen that bl(r)= -b2(r), then a Patterson func- 
tion with [[Fml(H)IZ+IFm2(H)I 2] as coefficient will 
contain only A - A  and N - N  peaks; the background due 
to A - N  peaks will be eliminated. However, a simple 
estimation shows that in a structure containing a large 
number of N-atoms, N - N  peaks give rise to a back- 
ground which is more serious than that due to A - N  
peaks. It is therefore necessary to eliminate both A - N  
and N - N  peaks. 

Expression for Ixl 2 

We shall now derive an expression for Ixl 2 in terms 
of IFml(H)I z, IFm2(H)I z, fi, bl(r), ba(i), b2(r) and b2(i). 

Eliminating ~ between equations (5) and (7) and 
using equation (9) we get, 

IFNI 4 -  2IFMZ[IFm~(H)] 2 + {b~(r) - b~(i) }Ix[ 2] 
+[[Fm1(H)lZ-{b~(r)+ b~(i)}lxlZlZ+~2b~(r)=O . (10) 

Similarly equations (6), (8) and (9) give, 

[FNI 4 -  2IFNI2[IFm2(H)I 2 + {b~(r) - b~(i) }lxl 2] 
+ [IFm2(H)[ 2 -  {b~(r) + b~(i)}lxl2] 2 + ~2b~(r) = 0 .  (11) 

Subtracting equation (11) from (10) gives, 
2IFMZ[{IFm~(H)I 2 -  ]Fmz(H)I z} + {(b~(r)- b~(i)) 

- ( b ~ ( r ) -  b ~ ( i ) )  }lxl 2] = [I Fm,(H)i 2 - {b~(r) + b~(i) } Ixl2] 2 
-[IFma(H)I 2 -  {b~(r)+b~(i)}lxl2] 2 + 6 2 { b ~ ( r ) - b ~ ( r ) } .  

(12) 
Now multiplying equations (5) and (6) by b2(r) and 

bx(r) respectively and subtracting the resulting equa- 
tions we have, 

[b2(r)lFm:(H)[ 2 -  b~(r)lFm2(H)] 2] = 
{bz(r) - bx(r)}lFM 2 + [b2(r){b~(r) + b~(i) } 

-b~(r){b~(r)+b~(i)}]lxl  2 . (13) 

Eliminating [FNI 2 between (12) and (13) we have, 
e [xl 4 - 2Qlxl 2 + R = 0 ,  (14) 

where 

P = {b~(r) - bz(r)}212{b~(i) + b~(i)} 
+ {bl(r) - bz(r)}21 + {b~(i) - b~(i) }2 

Q = { b x ( r ) -  bz(r) }2[IFml(O)[2 + IFmz(H)l 2] 
+ {b~(i) - b~(i) }{rm:(H)l 2 -  IFmz(H)I 2} 

R = {IFml(H)I 2 -  IFm2(O)12} 2 + 62{bx(r) - b2(r)}2. 

It is obvious that P, Q and R are always positive 
and therefore equation (14) will always have two posi- 
tive roots Ix+[ z and [x-I 2 given by 

ix±lZ= Q/ p + (Q2 _ R p  )~/p . (15) 

If we substitute b2(r)=b2(i)=O, it is equivalent to 
combining isomorphous and anomalous dispersion 
data. In this case equation (15) reduces to equation 
(11) of Singh & Ramaseshan (1966). 
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Interpretation of  two solutions 

The ph3;sical significance of the two values of Ixl z 
as obtained from equation (14) is that, in general, there 
are two sets of values of Ixl, IF~vl and ~0 for a given set 
of IFI(H)I 2, IFa(/-t)l 2, ]F2(H)I 2 and IF2(/-I)I 2. Two pos- 
sible values of IF~vl and ~0 can be calculated as follows: 

Subtracting equation (6) from (5) we get, 

IFmx(H)12- lFra2(H)l z= 
[{b2(r) + b2(i)) - {b22(r) + b2(i))]lxl z 

or + 2lF,vllx[(ba(r)-bz(r)} cos ~0 

IF~v( + )l cos ~0( + ) =  
[ {IFmx(n)l 2 -  IFmE(H)I 2} - {(b2(r) + b2(i)) 
-(b2(r)q -b2(i))}lx+lz]/2[bl(r)-b2(r)]lx+l, (16) 

and from equation (9), 

IFN(±)I sin ~0(+) = J/2lx±l. (17) 

Thus the values of IFz¢l and ~0 corresponding to Ix+l 
and Ix-I can be obtained from equations (16) and (17). 

For illustration computations were made in a hy- 
pothetical case with bl(r)=2.0, ba(i)= 1.0, bz(r)= 1"0, 
b2(i)= 1"0, (o=60 °, IFzcl =4.0 and Ixl =0.50. These give 
lFl(H)I=4.972, IFI(H)] =4"217, IFz(H)I =4.686, IFz(/7)l 
= 3"878. Thus, if we start with these as the values of 
the observed structure amplitudes we get from equa- 
tions (15), (16) and (17) 1x+1=3"95, IF~v(+)[=5.581, 
(p(+)=175°18 ' and Ix-l=0"50, IF~v(-)l =4"0, ~0(-)= 
60 ° . 

Choice of  the correct solution 
The next step is to choose the correct solution of 

equation (14). If the structure contains nA anomalous 
scatterers (all of the same type), then ]xml z, the maxi- 
mum possible value of Ixl z is n] when na nuclei scatter 
all in phase. Thus if Ix+l z > n] the only acceptable solu- 
tion is Ix-I z. If, however, Ix+l z < n~, both Ix+l z and Ix-I z 
are acceptable solutions by this criterion. In such cases 
the ambiguity remains unresolved. 

As the quantity (Q2-PR)  tends to zero, Ix+l z and 
Ix- I  z tend to be equal. One may come across cases 
where Ix+l z and Ix_l z are nearly equal. This makes the 
selection of the correct root difficult. In such cases it 
is better to take Q/P, the mean value of the two roots 
for Ixl z. 

Unique solution of  Ixl z 
If the two neutron-energies are so chosen that bl(r)= 

bz(r) and bl(i)# b2(i) (it is clear from Fig. 1 that such 
a choice is certainly possible) then 

and 

P = { b2( i ) - b22( i)  }z 

Q = ( ~ ( i )  - ~ ( i ) ) ( I F m a ( O ) l  2 -  IFmz(H)l  z)  
R = (IFrax(H)l z -  IFm2(H)I2) 2 . 

This leads to ( Q 2 - R P ) = 0  and therefore the two 
roots are coincident and are given by, 

Ix+12=lx-lZ=Q/P . (17) 

It may be noted that this result* can be obtained 
directly by subtracting equation (6) from equation (5). 

Owing to the practical difficulty in selecting the 
neutron-energies E1 and E2 for which ba(r)= bz(r), one 
may have a case b1(r)~-bz(r). It is rather fortunate that 
the factor {bl(r)-bz(r)} occurs in the expressions of 
P, Q and R as squares and, therefore, equation (17) 
can be used without introducing much error even if 
bl(r) and bz(r) are slightly different. 

As P depends only on the scattering lengths it may 
appear that P can be made zero by suitably selecting 
E1 and Ez. In such a case equation (14) will have only 
one root ]x[Z=R/2Q. However, since P is the sum of 
three positive terms, it can be made zero only when 
the three terms are separately zero which cannot be 
done except in a trivial case E1 = Ez. 

Refinement of  the thermal and positional parameters 
Once Ix[ is determined, a Patterson function with 

[xlZb2(r) as coefficients will give the positions of A-scat- 
terers. A comparison of Ix] calculated from the known 
positions of A-scatterers with those obtained from 
equation (15) will reveal the reflexions for which the 
root has been wrongly chosen. If equation (17) is used 
this comparison is not necessary. The values of ]x[ ob- 
tained this way can be used to refine the thermal and 
positional parameters of A-scatterers. 

3. Unique solution of the phases 

It can be easily shown (Ramachandran & Raman, 
1956) that the phase aAI(H) of the A-scatterer contri- 
bution to the structure factor is related to the phase 
ct~(H) of IF~(H)I by, 

O~l(H) = o~Al q- O1, (18) 

(see Fig. 2) where 01 is given by 

sin 01=AIj4[F'~(H)[[F]~[=J/2[F'~(H)[[x] (19) 

and 
[F~(H)[ = [½([FI(H)I 2 + [F1(/-7")1 z} -  ]F,~I2] + . 

01 determined from equation (19) will have two 
values 0x and (180°-01). Thus there is a twofold am- 
biguity in ct~(H) calculated from equation (18). In X-ray 
anomalous dispersion work this ambiguity has been 
resolved by various indirect methods (Ramaseshan, 
1963). 

Here it has been shown that the use of data collected 
at two neutron energies yields a unique solution off , (H) .  

Referring to Fig. 2, ~0 and 01 are related by, 

IFAll/sin (~o- 01)= lF'x(n)l/sin ~o . 
or 

sin (q~-O1)=IFAll/IF'~(H)I sin ~0. (20) 

* The authors are grateful to the referee for drawing their 
attention to the fact that when bl(r)=b2(r), a difference even 
Patterson function (Okaya, Saito & Pepinsky, 1955) also leads 
to similar results. 
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m l 

/ / 

Re 

Fig.2. Argand diagram representing F(H) and F(H). 

Combining equations (19) and (20) we get 

cos 01=[fi cot ~/2lx[ + lFml]/lF'~(n)l. (21) 

Equations (5), (6) and (9) can be combined to give 
cot ~--[(IFml(n)l 2 -  ]Fm2(n)l 2} - {(b2(r)+ b2(i)) 

- (b2(r )+ b2(i))}lxl2]/{b,(r)-b2(r)}d . (22) 

'On substituting the value of cot ¢ from equation 
(22) in equation (21) we have, 

that the one-level Breit-Wigner formula is valid. It can 
be shown from the one-level Breit-Wigner theory that, 

b'=½ gwAoFn(E-  Eo) 
( E -  Eo) 2 + F2/4 (i) 

and 
gwAoFnF 

b"=b(i)=¼ ~£._E0)2+ F2/4 , (ii) 

where g is a spin weighting factor, w is the isotopic 
abundance, which is unity for a resonant isotope, 20 
is the wavelength at resonance divided by 2n, Fn is the 
neutron width, F is the total width, E is the energy of 
measurement and E0 the resonance energy. Substituting 
the numerical values (Brockhouse, 1953) for various 
parameters in equations (i) and (ii) we get 

b' = A ( E -  Eo) 
(E- Eo) 2 + B 

and 
C 

b t !  

(E -E0)2+B ' 

where A, B, C and E0, have values respectively 0.278 x 
10 -12, 0.0032, 1.565 x 10 -14 and 0.178 eV for 113Cd and 
0-250x 10 -12, 0.0014, 0.920× 10 -14 and 0.096 eV for 
149Sm . 

The two sets of values of E for which bl(r) = b2(r) = b' 
can be calculated from the equations 

cos 0 , -  
{IFml(n)12-1Fm2(n)12}-((b2(r)+b2(i))-(b2(r)+b2(i))}lx[ 2 I F A , I  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  + - - -  (23) 
.......... 2{bl(r)-  b2(r)}lF;(H)llx] I F ; ( H ) I  " 

In case b,(r)= b2(r), equations (5) and (6) give, 
[FmI(H)[ 2 - Fm2(H)[ 2= {b~(i)- b~(i) }Ix] 2 

and equation (23) reduces to, 

cos 01 = - {bl(r) + b2(r)}lxl + 2[FAll 
2IF~(H)I (24) 

Since sin 01 and cos 0~ are known from equations 
(19) and (23) i'espectively, 01 and hence 7](H) is known. 

Similarly c~2(H) can also be obtained. 

4. Conclusion 

Thus we see that combination of the data collected at 
two neutron-energies makes it possible to determine 
and refine the thermal and positional parameter of the 
anomalous scatterer in large molecules - a process 
which is normally difficult. Further, the phases of the 
reflexions can be determined unambiguously. 

The author's thanks are due to the referee for his 
helpful comments. 

A P P E N D I X  

It has been shown in § 2 that if E1 and E2 are so chosen 
that bl(r) = b2(r) = b(r) and bl(i) -7 ¢: b2(i), Ixl 2 can be deter- 
mined uniquely. A method has been indicated to cal- 
culate such pairs of E, and E2. 

Measurement of the scattering and absorption cross- 
section of 113Cd and 149Sm (Brockhouse, 1953)shows 

( & , 2 -  Eo)-- 
and 0.139/b' + [{0.139/b'}2-0.0034] ~ for 113Cd 

(El,E-E0) = 
0"125/b' + [{0"125/b'}2-0-0014] ~ for 1495m. 

It is clear from Fig. 1 that such a pair, E, and E2, 
can be chosen on either side of the resonance energy 
(E0=0.178). However, the smaller-energy side (the 
shaded region) is preferable to the greater-energy side 
because of the convenient working wavelength and the 
large flux of neutrons from the pile. This region cor- 
responds to the X-ray wavelength range from Mo K~ 
to Fe K~. 
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